2019年5月17日星期五

Everyday Math 每日數學 之 Integration #20190517 (+Solution)





(a)
ex=1t1ex=1t1
x=ln(t1)
dx=1t1dt
1e4x+e3xdx
=1(1t1)4+(1t1)31t1dt
=1(1t1)3+(1t1)2dt
=(t1)31+t1dt
=t33t2+3t1tdt
=13t3+32t23t+ln|t|+C
=13(1ex+1)3+32(1ex+1)23(1ex+1)+ln|1ex+1|+C

(b)

Let u=ex . Then du=exdx .
1u5+u4du
=1e5x+e4xexdx
=1e4x+e3xdx
=13(1ex+1)3+32(1ex+1)23(1ex+1)+ln|1ex+1|+C ( by (a) )
=13(1u+1)3+32(1u+1)23(1u+1)+ln|1u+1|+C

(c)

e15u5+4u4(u5+u4)2du
=e1(5u4+4u3)u(u5+u4)2du
=u=eu=1u(u5+u4)2d(u5+u4)
=u=eu=1u(u5+u4)2d(u5+u4)
=u=eu=1ud(u5+u4)1
=[u(u5+u4)1]u=eu=1+u=eu=1(u5+u4)1du
=[(u4+u3)1]u=eu=1+[13(1u+1)3+32(1u+1)23(1u+1)+ln|1u+1|]u=eu=1
=(e4+e3)113(1e+1)3+32(1e+1)23(1e+1)+ln(1e+1)+196ln2

沒有留言:

發佈留言

有咩問題想問?歡迎留言!