2018 DSE | Mathematics (Compulsory) 5** | Mathematics (Algebra and Calculus) 5** | 專教數學CORE及M2 | 考試專家 | 技巧取勝
2019年6月1日星期六
Everyday Math 每日數學 之 Integration #20190529 (+solution)
Let u=√x
Then x=u2
dx=2udu
∫sec2√xdx
=∫2usec2udu
=∫2ud(tanu)
=2utanu−2∫tanudu
=2utanu−2∫sinucosudu
=2utanu+2∫1cosud(cosu)
=2utanu+2ln|cosu|+C
=2√xtan√x+2ln|cos√x|+C
Everyday Math 每日數學 之 Mathematical Induction + Trigonometry + Differentiation #20190601 (+Solution)
Solution:
(a)
For any non-negative integer n , denoted by P(n) the proposition that cosxcos(2x)cos(4x)...cos(2nx)=sin(2n+1x)2n+1sinx .
Note that cosx=2sinxcosx2sinx=sin(2x)2sinx .
P(0) is true.
Let k be a non-negative integer. Assume P(k) is true.
Therefore, cosxcos(2x)cos(4x)...cos(2kx)=sin(2k+1x)2k+1sinx .
Note that cosxcos(2x)cos(4x)...cos(2kx)cos(2k+1x)=sin(2k+1x)cos(2k+1x)2k+1sinx=sin(2k+2x)2k+2sinx
Therefore, P(k+1) is true.
By the principle of mathematical induction, for any non-negative integer n , cosxcos(2x)cos(4x)...cos(2nx)=sin(2n+1x)2n+1sinx
(b) ddx[12101sin(2101x)cscx]
=−12101sin(2101x)cscxcotx+12101cscxcos(2101x)⋅2101
=−12101sin(2101x)cscxcotx+cscxcos(2101x)
ddx|x=π412101sin(2101x)cscx
=−12101sin(2101⋅π4)cscπ4cotπ4+cscπ4cos(2101⋅π4)
=√2
訂閱:
文章 (Atom)